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The dynamic response of a pair of identical centrifugal pendulum vibration absorbers
is considered. Of particular interest here is the effectiveness of using non-linear behavior
to simultaneously reduce torsional vibrations in rotating machines that arise from external
torques consisting of multiple harmonics. The equations of motion for the coupled
absorber/rotary system are given in which the absorbers are allowed to undergo finite
amplitude motions. The Method of Multiple Scales (MMS) is applied to the second order
to achieve approximate steady-state solutions of these equations. It is found that the pair
of absorbers are capable of simultaneously cancelling two harmonics when the absorber
damping is kept small, although higher order harmonics may be amplified. This is achieved
by a bifurcation of the unison motion of the absorbers to a motion with a relative phase
shift and an amplitude difference. Due to this bifurcation, the performance of the absorber
pair is superior to that of a single absorber having the same total inertia. This study focuses
on the analytical aspects of the problem and simulation verification of the results.
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1. INTRODUCTION

Centrifugal pendulum vibration absorbers (CPVA’s) are used to reduce vibrations in
rotating and reciprocating machinery. They have been successfully employed in internal
combustion engines and helicopter rotors to counteract the oscillating components of
applied forces and torques of a given harmonic order over a range of operating speeds
(for applications, see references [1–4]). Due to spatial and balancing considerations, the
practical implementation of CPVA’s usually requires a number of individual absorbers
stationed about the center of rotation. When designing absorber systems for attenuating
torsional vibrations, sizing estimates and analytical performance evaluation predictions are
based on treating the absorbers as if they all move in exact unison, acting essentially as
a single absorber [1, 5]. An exception is the recently proposed ‘‘sub-harmonic’’ pair of
CPVA’s that uses an ‘‘out-of-phase’’ motion of paired identical absorbers [6].

The current study is motivated by observations made during numerical simulations of
a rotary system with multiple CPVA’s, where it was observed that the unison motion
undergoes a dynamic instability that results in the absorbers moving with relative phase
shifts and amplitude differences [7]. Recently, an approximate stability criterion for the
unison motion for the case of N identical tautochronic absorbers and a purely harmonic
torque has been obtained [8]. The present study is limited to the case with two identical
CPVA’s, but goes further in that the applied torque is taken to be multi-harmonic and
the post-critical response is determined. It is observed in the present simulations that the
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CPVA’s move in unison at small torque levels, but when the torque amplitude exceeds a
certain value they undergo a bifurcation in which the absorber motions deviate from one
another. Furthermore, it is observed that this bifurcation has a generally beneficial effect
on the overall torsional vibration level of the system.

The goal of this study is to develop an analytical formulation that is capable of
predicting the parameter conditions associated with the instability of the unison motion
and the performance of the absorber system beyond the instability.

The system under investigation is modelled as a rotating disk with two identical
absorbers with identical paths, where the disk is subjected to an external torque consisting
of two harmonics. The absorbers are assumed to be designed such that their centers of
mass follow a particular epicycloidal path that provides an approximately tautochronic
motion of the absorbers [5]. This path shape helps to avoid the potentially disastrous effects
of non-linear mistuning [9, 10]. (Note that most applications use cycloidal paths or simple
circular paths with small intentional mistuning. These partially account for
amplitude-induced mistuning, whereas epicycloidal paths are optimal in this regard; see
reference [5].) The perturbation analysis is carried out by at second order Method of
Multiple Scales (MMS) technique recently proposed by Lee and Lee [11], which is a
simplified version of the MMS offered by Rahman and Burton [12]. This approach
captures the desired results.

This paper is arranged as follows. Section 2 describes the basic system in terms of
assumptions and a dynamical model. Section 3 contains a summary of the perturbation
analysis, the main results and a comparison with numerical simulations. Since the system
possesses many parameters, a few special cases of interest are selected for consideration.
Section 4 closes the paper with some conclusions, design suggestions, and a conjecture
regarding systems with more than two absorbers.

2. THE BASIC SYSTEM

The model of the general system consists of a disk which is free to rotate in a plane about
a fixed point O and N absorber masses which move along epicycloidal paths relative to
the disk. Figure 1 shows the case for N=1. Of particular interest in the present work is
the case N=2. The disk respresents the inertia of the primary system, and its angular
orientation is denoted by u which is measured relative to an inertial frame of reference.
It has a moment of inertia of Id respect to point O. The ith absorber is modelled as a point
mass mi , riding on an epicycloidal path tuned to order ni , which is specified by

Figure 1. Schematic diagram of the basic system with one absorber.
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i , where Ri denotes the distance from a point on the ith absorber path to
point O, R0i is the value of Ri at the vertex point of the path, and Si is an arc length variable
along the path. The variable Si is also used to denote the location of mi during its motion,
and it is chosen such that Si =0 at the vertex. The absorber has a nominal moment of
inertia Ii =miR2

0i at its vertex with respect to point O. Note that in order to generalize to
the case of non-point-mass absorbers, the moments of inertia about their own centers of
mass can be included in Id .

The model also includes linear viscous-type damping for the disk and each absorber,
with c0 and cai as the corresponding damping coefficients. The external torque is assumed
to be a combination of a constant component, T0, and an oscillating components, T(u).
(These include all external torques, including any loads acting). The constant torque T0

balances the mean component of the torque which arises from bearing damping at point
O, thus setting the mean rotation speed of the disk, V, while the oscillating torque T(u)
is the source of speed fluctuations and torsional vibration.

Assuming that gravitational effects are small and the associated potential energy is
therefore negligible, the governing equations of motion for this system are determined by
applying Lagrange’s method to the kinetic energy. After non-dimensionalization the
equations of motion are given by

s̈i + gi (si )ż+ n2
i si (1+ z)2 =−m̂ai ṡi , i=1, . . . , N, (1)

s
N

k=1

bk$−2n2
kskṡk (1+ z)+ (1− n2

ks2
k )ż+ gk (sk )s̈k +

dgk

dsk
(sk )ṡ2

k%+ ż

= s
N

k=1

bkm̂akgk (sk )ṡk − m̂0(1+ z)+G
 0 +G
 (u), (2)

where (·) denotes d(·)/dt, t=Vt, si =Si /R0i , z=(1/V)(du/dt)−1=du� /dt−1, bi = Ii /Id ,
m̂ai = cai /miV, m̂0 = c0/IdV, G
 0 =T0/IdV

2, G
 (u)=T(u)/IdV
2, and

gi (si )=z1− n2
i (n2

i +1)s2
i . (3)

Equation (1) represents the dynamics of the absorber masses, while equation (2) is a
dynamic torque balance for the disk. It should be noted that the G
 ’s represent the torque
amplitudes, the m� ’s represent damping coefficients, bi is the ratio of the ith absorber inertia
to the disk inertia (a quantity typically much less than unity), si’s denote absorber
displacements, z represents the deviation of the non-dimensionalized angular speed from
unity, and t is a time scale based on the nominal angular speed, V. Herein the case of
two absorbers, N=2, with identical paths is considered.

Two consecutive changes of variables are applied to the equations of motion in order
to transform them into a more convenient form for analysis. The first one transforms the
independent variable from t to u. The advantage offered by this is that the large non-linear
term G
 (u) can be converted into an external, periodic excitation. The second
transformation decouples the undamped version of the non-linear equations of motion at
the linear order, and this allows one to easily identify the dynamic mode that is involved
in the bifurcation.

The first transformation is accomplished by making the reasonable assumption that the
system rotates with (1+ z) always positive, i.e., the disk never reverses its direction of
rotation. This allows one to convert the equations of motion via a change of variables to
a form in which u is the independent variable. Since u appears explicitly only in the applied
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torque in equation (2), the torque plays the role of an external periodic excitation in the
new equations of motion. The transformation is realized by expressing t as a function of
u (the solution for this relationship is never actually required in the analysis) and
re-expressing all functions of t as functions of u. In terms of the new variables, the angular
acceleration of the disk, ż, becomes (1+ z)z', where (·)' denotes d(·)/du. The equations
of motion which result from this transformation are given by

s0i (1+ z)+ [s'i + gi (si )]z'+ n2
i si (1+ z)=−m̂ais'i , i=1, . . . , N, (4)

s
N

k=1

bk (1+ z)6$−2n2
ksks'k + gk (sk )s0k +

dgk

dsk
(sk )s'2

k %(1+ z)+ [(1− n2
ks2

k )+ gk (sk )s'k ]z'7
+(1+ z)z'= s

N

k=1

bkm̂akgk (sk )s'k (1+ z)− m̂0(1+ z)+G
 0 +G
 (u). (5)

Note that the differential order of the equations of motion is reduced by one with this
transformation, since the original form contains ż= u� whereas the new version contains
z', and z, not u, is the important dependent variable. However, also note that this
transformation introduces additional non-linear terms and renders the system
non-autonomous in terms of u.

When there are no applied oscillatory torques (G
 (u)=0), there exists a motion in which
the disk rotates at a constant rate (z0 0), the absorbers remain at their vertices (si 0 0),
and the bearing torque is balanced by the constant torque (m̂0 =G
 0). Therefore, the values
of the dependent variables s1, s2, and z can be assumed to be small when the level of the
oscillatory excitation G
 (u) is small. This will be the generating motion for the perturbation
analysis.

The purpose of the second transformation is to at least partially decouple the undamped
version of equations (4) and (5) at the linear order. Since the number of absorbers is two,
i.e., N=2, and the absorbers and their paths are designed to be identical to each other,
the system parameters are simplified as follows: b1 = b2 0 b, m̂a1 = m̂a2 0 m̂a , and
n1 = n2 0 n. Due to a special symmetry in the N=2 version of the equations of motion,
it is convenient to define the following dimensionless co-ordinates which replace s1 and s2:

j1 = (s1 + s2)/z2, j2 = (−s1 + s2)/z2, (6)

with its inverse transformation provided by

s1 = (j1 − j2)/z2, s2 = (j1 + j2)/z2. (7)

This linear transformation puts the undamped linear part of the system in a convenient
form. A similar transformation was used by Cronin in order to decouple the linearized
equations for a set of CPVA’s used for shake reduction [4].

When this transformation is applied to the equations of motion (4) and (5), one obtains

j0r + n2(1+2b)j1 = −(1+2b)(m̂aj'1 + j01 z+ j'1z'+ n2j1z+ h1z')−z2f, (8)

j02 + n2j2 =−(m̂aj'2 + j02 z+ j'2z'+ n2j2z+ h2z'), (9)

(1+2b)z'+z2bj01 = f, (10)



   735

where

h1 = h1(j1, j2)=
1

z2 $X1−
n2(n2 +1)(j1 + j2)2

2
+X1−

n2(n2 +1)(j1 − j2)2

2
−2% (11)

h2 = h2(j1, j2)=
1

z2 $X1−
n2(n2 +1)(j1 + j2)2

2
−X1−

n2(n2 +1)(j1 − j2)2

2 %, (12)

f= f(j1, j'1 , j2, j'2 , z, z', u)= b(1+ z)2[2n2(j1j'1 + j2j'2 )− (h1j01 + h2j02 )]

+
bn2(n2 +1)(1+ z)2

2 0(j1 − j2)(j'1 − j'2 )2

h1 − h2 +z2
+

(j1 + j2)(j'1 + j'2 )2

h1 + h2 +z2 1
+b(1+ z)z'[n2(j2

1 + j2
2 )− (h1j'1 + h2j'2 +z2j'1 )]−z2bj01 z(z+2)− (1+2b)zz'

+bm̂a (1+ z)(h1j'1 + h2j'2 +z2j'1 )− m̂0(1+ z)+G
 0 +G
 (u). (13)

It can be seen that the equations for j1 and j2 are decoupled at linear order.
The natural frequencies v and mode shapes (j1, j2, z') of the linearized system are:

(1) v=0 and (j1, j2, z')= (0, 0, 1). This denotes the rigid-body motion of the disk with
the absorbers at their vertices.

(2) v= n and (j1, j2, z')= (0, 1, 0). This denotes the case when the absorbers move
exactly out-of-phase at equal amplitude and the disk runs at a constant speed.

(3) v= nz1+2b and (j1, j2, z')= (1, 0, z2bn2). This is identical to the only vibration
mode of an equivalent single-absorber/disk system, as the absorbers move in exact unison
and the disk undergoes torsional oscillations out-of-phase with respect to the absorbers.
(Note that this physical interpretation requires that the system be visualized in the (s, u)
co-ordinates.) In designing absorber systems it is generally assumed that the system will
operate in this mode, even for moderate and large amplitudes.

An examination of equations (8)–(10) indicates that, due to resonant interactions,
bifurcations may occur in j2 if the external torque consists of harmonics of order n or
multiple orders of n. The order n harmonic induces a primary resonance of j2, while higher
order harmonics of n induce subharmonic resonances of j2 through non-linearities of the
system. For the current study, the oscillating part of the torque is restricted to the case
of an order n harmonic plus an order 2n harmonic, as follows:

G
 (u)=G
 n cos (nu− gn )+G
 2n cos (2nu− g2n ). (14)

Before turning to the general analysis, there is a special case worthy of note, wherein
the 2n harmonic of the torque G
 (u) can be totally cancelled by a pair of identical absorbers
[6]. For zero absorber damping (m̂a =0), zero order n torque G
 n =0, and a balance between
the disk damping torque and the constant applied torque (m̂0 =G
 0), the non-linear system
has an exact solution given by

j1 =0, j2 = (1/n)z(G
 2n /bn) cos (nu− g2n /2− p/4), z=0. (15)

The frequency of the absorbers’ motions in this case is a subharmonic of order two relative
to the external torque, since its frequency is n while the external torque is of frequency
2n. During this motion the absorbers move exactly out-of-phase with respect to each other
(s1 =−s2, since j1 =0), totally cancelling each other’s odd order harmonics. However, the
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order 2n harmonics generated by quadratic non-linearities add in such a manner so as to
exactly cancel the applied torque, and no other even order harmonics are generated. As
a result, the disk will rotate at a constant rate, z=0, over a range of torque amplitudes
up to G
 =2bn/(n2 +1), at which point the absorber masses reach cusps in the epicycloidal
paths during their motions. (This limit can be established by determining where the gi’s
vanish and the dgi /dsi’s become singular.) The dynamic stability of this response has been
derived by Lee et al. [6] in the presence of small absorber damping. Those results are
contained in the more general analysis that follows.

3. PERTURBATION ANALYSIS

An exact, global solution of the basic system is given in the previous section for the case
when m̂a =0 and G
 (u) consists of an order 2n harmonic only. However, the corresponding
solution for m̂a $ 0 and multi-harmonic G
 (u) is not available in closed form. Therefore,
the method of multiple scales (MMS) is used to obtain a second order approximation of
this solution for 0Q m̂a�1 and 0QG
 (u)�1. This solution will be used for determining
the stability of the unison motion and, more importantly, the post-critical behavior of the
system, including an analysis of the performance characteristics of the absorbers in this
operating range.

The perturbation analysis is carried out by a newly proposed MMS to the second order,
developed by Lee and Lee [11], which is a simplified version of that proposed by Rahman
and Burton [12]. The variables and parameters are scaled such that the bifurcation of
interest appears at the second non-linear order, i.e., the third order in the scaling
parameter, e. They are given by

j1 = ej1,1 + e2j1,2 + e3j1,3 + · · · , j2 = ej2,1 + e2j2,2 + e3j2,3 + · · · , (16, 17)

z= ez1 + e2z2 + e3z3 + · · · ,
d
du

=D0 + eD1 + e2D2 + e3D3 + · · · , (18, 19)

m̂a = ema , m̂0 = em0, G
 n = eGn , G
 2n = e2G2n , G
 0 = eG0,1 + e2G0,2 + · · · , (20)

where

Dp = 1/1Up , Up = epu, p=0, 1, 2, 3, . . ..

Note that it is assumed that the higher harmonic torque is taken to be smaller in scale
than the leading order (n) torque. This is chosen such that the bifurcations caused by the
order n and order 2n excitations appear simultaneously at the second non-linear order. This
is also consistent with applications, as the fundamental order (n) is usually the dominant
excitation term.

Details of the analysis are not given here, but some highlights are provided in Appendix
A. It is assumed that bifurcations occur only in the variable j2, as is known to be the case
when only order 2n excitation is present [6]. This assumption is reasonable when the
excitation also contains higher harmonics of n since the rigid-body mode of the system
and the unison mode of the absorber motion have, respectively, natural frequencies of
v=0 and v= nz1+2b, which are generally not commensurate with n. The variables
z and j1 associated with these two modes are expected to be stable and the homogeneous
terms associated with them must vanish. Therefore, only particular terms of their solutions
are considered in the derivations. Then the steady-state solutions of the system are carried
out to the second non-linear order by using the version of MMS offered by Lee and Lee
[11].
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By assuming that bifurcations occur only for j2, and balancing the nominal rotation
friction with G
 0, the second order steady state solutions are given by the following:

G
 0 = m̂0, (21)

j1 =−b3G
 n cos (nu− b4)−
z2[b1 sin (2nu− b2)+2b2n4a2

2 sin (2nu−2f2)]
2bn3(3−2b)

, (22)

j2 = a2 cos (nu−f2), (23)

z=
m̂aG
 n cos (nu− gn )

2bn2 +
3[b1 cos (2nu− b2)+2b2n4a2

2 cos (2nu−2f2)]
4bn2(3−2b)

, (24)

where the first condition is simply a balance of the constant applied torque (including load)
and the damping torque at the bearing on which the disk rotates, a2 is the amplitude of
the j2 mode, and where the other terms have been defined as follows:

b1 =zG
 4
n +4b2n2G
 2

2n +4bnG
 2
nG
 2n sin (2gn − g2n ), (25)

b2 =2gn +arg (G
 2
n +2bnG
 2n sin (2gn − g2n )+2jbnG
 2n cos (2gn − g2n )), (26)

b3 =z2[4b2n2 + (1+4b)2m̂2
a )]/4b2n3, b4 = gn +arg (2bn+j(1+4b)m̂a ). (27, 28)

(Note that the results become singular when b=3/2. In this case the natural frequencies
of the unison and out-of-phase modes are in a 1:2 ratio, an internal resonance condition
that will no doubt give rise to other non-linear behavior. However, b is the ratio of
absorber inertia to disk inertia, and it will never be larger than one for a tuned absorber
system.)

The angular acceleration of the disk, a, is the important variable for assessing absorber
effectiveness, and it is equal to (1+ z)z'. Its approximation to order e2 is given by

a1 z'=−
m̂aG
 n sin (nu− gn )

2bn
−

3[b1 sin (2nu− b2)+2b2n4a2
2 sin (2nu−2f2)]

2bn(3−2b)
. (29)

It can be seen that the order n harmonic in a, which arises from the effect of absorber
damping, is not affected by the bifurcation of j2, while the order 2n harmonic is strongly
influenced by the bifurcation through a2.

To carry out the bifurcation analysis, it is useful to define the complex response variable
A2 = 1

2a2 e−jf2, where j2 =1/2(A2 +A�2). (An overbar denotes complex conjugation.) In
terms of A2 it is determined that the annulment of secular terms at second order in the
MMS procedure requires that the following condition holds:

2jn
dA2

du
=−jnm̂aA2 −

3(b1 cos b2 − jb1 sin b2 +8b2n4A2
2 )A�2

4b(3−2b)
. (30)

Two solutions of this condition are now examined in terms of their stability and the
attendant absorber performance.

There are two solutions of A2 in equation (30), the trivial solution a2 =0, and a
non-trivial solution of amplitude

a*2 = 4z9b2
1 −16b2n2m̂2

a (3−2b)2/z6bn2. (31)

The phase angle associated with the latter solution is

f2 = [p+ b2 +arg (3bn3a2
2 +2jm̂a (3−2b))]/2. (32)



.-.   . . 738

The solution a2 =0 is stable for b1 Q b*1 , where the bifurcation parameter condition is

b*1 =4bnm̂a (3−2b)/3. (33)

The solution corresponding to a2 =0 becomes unstable at b1 = b*1 , at which point the
solution a2 = a*2 appears, and this solution is stable when it exists.

For a2 =0, the system response is expressed in equations (22), (23), and (29), with a2 =0.
The two absorbers move in unison, s1 = s2, since j2 =0, and this is the base operating
condition that is generally assumed to occur. The angular acceleration of this response has
an order n harmonic whose source is absorber damping and an order 2n harmonic arising
from a combination of the order 2n applied torque and the non-linear effects of the
absorber motion, as seen from equation (29) and the term b1 in equation (25).

The system response corresponding to a2 = a*2 can be expressed as

j1 = − b3G
 n cos (nu− b4)+ [2z2m̂a cos (2nu−2f2)]/3n2, (34)

a=−[m̂aG
 n sin (nu− gn )]/2bn+2m̂a cos (2nu−2f2), (35)

with j2 given in equation (23). The important feature of this response is that the order 2n
harmonic of a is independent of the external torque, thus rendering this harmonic
‘‘saturated’’ at a fixed value, 2m̂a . Also, the order 2n harmonic of j1 saturates at a level
of 2z2m̂a /3n2. It should be noted that the acceleration a vanishes as m̂a:0, which implies
that a pair of order n epicycloidal CPVA’s is capable of cancelling a torque consisting of
both order n and order 2n harmonics. However, some higher harmonic order of a will
persist, and may even be amplified, but these effects are not captured by the current
analysis.

4. CASE STUDIES

The system response to several combinations of excitation terms is considered. Two very
special operating conditions are first briefly described. Then three other cases follow in
which b1 is varied. Finally, the case wherein only the order n harmonic is present in the
torque is discussed in some detail. The goal in the latter case is to determine the effects
of the bifurcation on the system performance when concentrating on a single harmonic.
Where appropriate, analytical results are verified against simulations. The system
parameter values used are given by: b=0·0831, n=2, m̂0 =0·05, and m̂=0·005; these data
are based on an in-line, four-cylinder automotive engine [5].

Two special solutions are first addressed: the first is the case G
 n =0, and the second is
for G
 2

n =2bnG
 2n and 2gn − g2n =−p/2. The first case has been studied extensively by Lee
et al. [6], and the system behaves exactly as predicted by the perturbation analysis. This
is a special case when the relative phase between the two absorbers is p in the
post-bifurcation range, rendering a subharmonic vibration absorber system that has been
shown to be very effective in handling a single harmonic torque. The second case represents
the situation in which b1 =0 even though the values of G
 n and G
 2n do not vanish. In this
case the unison motion of the absorbers is predicted to be stable over the entire torque
range, and this has been verified by numerical simulations.

The three cases, in which b1 is varied, are now presented. They are chosen such that
G
 2n =0 for Case 1, G
 2

n =2bnG
 2n and 2gn − g2n = p/2 for Case 2, and G
 2
n =2bnG
 2n and

2gn − g2n =0 for Case 3. Case 1 represents a situation when the external torque consists
of only an order n harmonic. Case 2 and Case 3 are chosen to study the effect of the
different phases between the order n and order 2n harmonics of the external torque for
a particular proportion of torque harmonic amplitudes. The b1 value is varied in each case
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Figure 2. (a)2n versus b1 from stable and unstable branches of the perturbation result and numerical results
of three forcing conditions: ––––––, unstable; ——, stable; e, Case 1; w, Case 2; +, Case 3.

through the torque amplitudes, maintaining the condition G
 2
n =2bnG
 2n . The results are

shown in Figures 2 and 3 for these three cases, where (a)2n represents the amplitude of the
order 2n harmonic of the angular acceleration a. (Recall that (a)n , the nth order harmonic,
varies in an essentially linear manner with respect to Gn .) The ‘‘unstable’’ and ‘‘stable’’
branches in Figure 2 are those obtained from the analytical perturbation results. It is found
that (a)2n increases linearly with respect to b1 until b1 = b*1 , at which point a bifurcation
occurs. While the perturbation results predict the bifurcation point very well, the
post-bifurcation level of (a)2n does not saturate at 2m̂a as predicted. This is due to higher
order non-linear effects not considered in the present analysis. Figure 3 shows a plot of
the a2’s, that is, the amplitude of the out-of-phase component, versus b1. It can be seen

Figure 3. a2 versus b1 from perturbation analysis and numerical results of three forcing conditions. ——, Ana;
e, Case 1; w, Case 2; +, Case 3.
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that the a*2 ’s, i.e., the stable post-bifurcation branches, are somewhat smaller than
predicted by the perturbation analysis. Cases 2 and 3 demonstrate that a pair of order n
epicycloidal CPVA’s are capable of simultaneously reducing two harmonic excitations.
Also, it is seen that the general character of the response is the same in these cases as b1

is varied. However, other response characteristics may occur for other torque proportions
or relative phases.

Finally, of particular interest is the case G
 2n =0, which represents the use of two identical
order n epicycloidal CPVA’s for an order n external torque. It is desirable to obtain a direct
comparison of the performance of a pair of identical absorbers with that of a single
absorber wherein the total absorber mass and dissipation are held fixed. The absorbers
behave identically in the pre-bifurcation range, but differ in the post-bifurcation range.
Here the maximum absorber amplitude can be approximated by neglecting the order 2n
component of j1 in equation (22) and substiting equations (22) and (23) into equation (6),
yielding

max (s)1z(a2
2 + b2

3G
 2
n +2a2b3Gn =cos (f2 − b4) =/2. (36)

In order to survey the effects of the bifurcation on absorber performance, numerical
simulations were carried out and the results are shown in Figures 4 and 5. The performance
of the paired absorbers is compared with two other configurations with the same total
absorber inertia. In the first configuration for comparison, the absorbers are forced to
move in unison, as if there were only a single absorber with the same inertia; this is termed
the ‘‘lumped configuration’’. In the second configuration, the absorbers are locked at their
vertices; this is the baseline operation of the system without any dynamic absorbers.

Figure 4 displays the maximum absorber amplitude max (s) versus G
 n , where ‘‘Ana-1’’
and ‘‘Ana-2’’ are analytical results from equation (36) with a2 =0 and a2 following
equation (31), respectively. ‘‘Num-1’’ and ‘‘Num-2’’ are numerical results for the lumped
configuration and for the paired absorbers, respectively. In the case with the paired
absorbers, the maximum absorber amplitude grows rapidly near the bifurcation torque
G*n =zb*i and then roughly tracks the lumped response in terms of slope thereafter. It
is important to note that one absorber reaches its cusp (the peak amplitude physically

Figure 4. Max (s) versus G
 n , both of the analytical and numerical results of paired absorbers and the lumped
configuration: ––––––, Ana-1; ——, Ana-2; e, Num-1; +, Num-2.
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possible) at a torque level smaller than that of the lumped configuration. Figure 5 shows
corresponding numerical results for the maximum angular acceleration. Here it is seen that
the bifurcation has the advantage of slightly reducing the maximum angular acceleration
near the bifurcation.

5. DISCUSSION

The fundamental mechanism of the bifurcation can be explained by considering a special
case, as follows. As pointed out by Shaw and Lee [13], the torque generated by an
undamped order n epicycloidal CPVA consists of all the odd multiple sine harmonics of
order n plus an order 2n sine harmonic. (This is determined from the case in which the
disk undergoes a constant-rate rotation and the absorber motion is expressed as an order
n sine function.) For the special case when m̂a =0 and G
 2n =0, the paired absorbers in the
present situation bifurcate immediately at G
 n =zb*1 =0, as seen from equation (33). By
substituting equations (23), (25)–(28), (31), and (34) into equation (7), the absorber
motions for this case are found to be as follows:

s1 = (G
 n /bn2) cos (nu− gn −(5/4)p), s2 = (G
 n /bn2) cos (nu− gn −(3/4)p). (37)

The two absorbers move with the sample amplitude, but with a phase difference of p/2.
It is important to note that the order 2n harmonics of the torques generated by these two
absorbers cancel each other since the p/2 phase difference at order n translates to a phase
shift of p in the induced order 2n torque, thereby resulting in torque cancellation at that
order.

In contrast, for the case of the lumped configuration, the absorber amplitude is achieved
by setting a2 =0 in equations (22) and (23), keeping only the order n component, and then
substituting the result into equation (7), yielding

s1 = s2 = (G
 n /z2bn2) cos (nu− gn − p). (38)

By comparing equations (37) and (38), it is seen that the absorber amplitudes are increased
by a factor z2 in the paired absorber case (this also follows from simple vector addition

Figure 5. Max (a) versus G
 n , numerical results of the paired absorbers and the lumped configuration, along
with the case with the absorbers locked for a reference: ——, locked; e, Num-1; +, Num-2.
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of the phase-shifted absorbers’s torques). In this way the order n excitation is dealt with
equally effectively by both the lumped configuration and the paired configuration,
although the latter requires larger absorber amplitudes. However, since the absorbers are
not locked in unison, the paired absorbers are able to cancel simultaneously both the order
n external excitation and the induced order 2n torques by adjusting their amplitudes and
phases from the nominal values given above and using non-linear effects of the absorber
torques. When an order 2n applied torque is also present, the amplitudes and phase shift
to accommodate that term in addition.

For a more thorough performance evaluation, higher order harmonics must also be
considered, as they are actually amplified in the bifurcated motion. For example, the order
3n torque harmonic generated by an absorber grows approximately as s3. Thus, the
amplitude rescaling of z2 and the phase shift of p/2 render the order 3n torque twice as
large in the paired absorber case when compared with the lumped configuration.

6. CONCLUSIONS

It has been shown that the paired absorbers are capable of simultaneously reducing the
two harmonics of the torsional oscillations, but at the expense of increasing higher
harmonic amplitudes. In addition, the peak amplitudes of the absorber motions are larger
than those for the corresponding unison motion of the lumped configuration in the
post-bifurcation range, thereby reducing the applicable torque range. While the
perturbation analysis accurately predicts the bifurcation condition, it does not predict the
post-bifurcation behavior as well, except in some special cases, due to the effects of higher
order harmonics.

An interesting conjecture raised by the results contained herein is that one may find that
by using N identical absorbers, the harmonic content of their motions in a post-critical
range may adjust to simultaneously counteract N harmonics of the applied torque. If true,
multiple absorber systems may have a better than predicted performance, but over a
smaller torque range. Recent work has shown that the unison response of a system with
N absorbers can indeed bifurcate, and the post-bifurcation dynamics are currently being
studied.

As is typical for tuned absorber systems, the level of absorber damping plays a critical
role in determining performance, and it is desirable to keep it as small as possible. This
is true for designs based on linear or non-linear considerations. An unfortunate reality is
that the absorber damping is very difficult to estimate from first principles and is not easily
measured, and therefore one must be cautious when sizing absorber systems based on
analytical calculations. Experimental testing, of at least the damping levels and how they
depend on operating conditions, will be required for actual implementation.
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APPENDIX A: LEE AND LEE’S VERSION OF MMS

This appendix highlights the application of Lee and Lee’s version of MMS to achieve
the steady-state periodic solutions and their stabilities for the system under investigation.
Since bifurcations are assumed not to be associated with j1 and y, the homogeneous
solutions of j1 and y are neglected, while the steady-state solutions for j2, denoted by j2,0

are written in the form

j2,0 =B2 ejnU0 + cc, (A.1)

where B2 is treated as a complex constant when calculating secular terms at higher orders,
and A2 = eB2 in equation (30). The secular terms of j2 at O(e2) and O(e3) are

−jnmaB2 and −(3(d1 cos b2 − jd1 sin b2 +8b2n4B2
2 )B�2)/(4b(3−2b)), (A.2)

respectively, where b1 = e2d1 in equation (25). These two secular terms are recombined by
multiplying them by e2 and e3, respectively, adding up the result, and recovering the
parameters and variables to their original forms. These results are found in the right hand
side of equation (30). The left hand side of equation (30) is a recombined result from
2D0Dij2, which is a term obtained from the expansion of d2(·)/du2. These two parts
determine the steady-state solutions and their stabilities.

This method is simpler than Rahman and Burton’s version of MMS in two ways: system
parameters do not need to be expanded in series; and several time derivative terms can
be neglected beforehand, since it is known a priori that they will be eliminated in the
reconsitution procedure, thus saving calculation effort. The method of Lee and Lee
simplifies the calculations involved in Rahman and Burton’s version of MMS, but the
results from the two procedures are identical.


